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ABSTRACT
Whether an outfit is compatible? Using machine learning methods
to assess an outfit’s compatibility, namely, fashion compatibility
modeling (FCM), has recently become a popular yet challenging
topic. However, current FCM studies still perform far from satis-
factory, because they only consider the collocation compatibility
modeling, while neglecting the natural human habits that people
generally evaluate outfit compatibility from both the collocation
(discrete assess) and the try-on (unified assess) perspectives. In
light of the above analysis, we propose a Collocation and Try-On
Network (CTO-Net) for FCM, combining both the collocation and
try-on compatibilities. In particular, for the collocation perspective,
we devise a disentangled graph learning scheme, where the
collocation compatibility is disentangled into multiple fine-grained
compatibilities between items; regarding the try-on perspective,
we propose an integrated distillation learning scheme to unify all
item information in the whole outfit to evaluate the compatibility
based on the latent try-on representation. To further enhance
the collocation and try-on compatibilities, we exploit the mutual
learning strategy to obtain a more comprehensive judgment.
Extensive experiments on the real-world dataset demonstrate
that our CTO-Net significantly outperforms the state-of-the-art
methods. In particular, compared with the competitive counterparts,
our proposed CTO-Net significantly improves AUC accuracy from
83.2% to 87.8% and MRR from 15.4% to 21.8%. We have released our
source codes and trained models to benefit other researchers1.
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Do these fashion items
compose a decent outfit?

Please wait. I will judge it thoroughly from
both collocation and try-on angles.

The collocation and try-on scores are 0.86
and 0.90, respectively. It is a nice outfit !
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Figure 1: Illustration of the compatibility modeling from
both collocation and try-on perspectives.
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1 INTRODUCTION
With the blossom of e-commerce, an increasing number of people
have turned to online shopping for fashion garments. Enjoying the
convenience provided by the online fashion market, people also
tend to be overwhelmed by the numerous online clothing items.
Specifically, they are frequently encountered with problems such
as: “does this T-shirt match my jeans” or “which shirt is better for
the skirt”. Towards this end, fashion compatibility modeling (FCM)
that aims to automatically assess the compatibility (i.e., matching
score) of items in an outfit has gained growing research attention.

There have been numerous researches of FCM proposed in
the literature [2, 3, 8, 16, 18, 27, 34, 37]. Despite the impressive
progress, current FCM methods still perform far from satisfactory.
They only focus on modeling the compatibility relationship among
discrete items in an outfit but overlook the human habits on
fashion compatibility evaluation. In fact, people usually evaluate
the matching degree of a given outfit from not only the collocation
angle (i.e., in a discrete manner) but also the try-on angle (i.e., in a
unified manner). In light of this, we aim to devise a comprehensive
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FCM scheme that evaluates the outfit compatibility from both the
discrete collocation and unified try-on angles, as shown in Figure 1.

However, combining both the collocation and try-on angles
is non-trivial due to the following challenges. 1) The visual
compatibility among discrete items in an outfit can be affected
by multiple latent factors (e.g., color, material and style), which
indicates that the overall compatibility among items can be
decoupled into multiple latent fine-grained visual compatibility. We
argue that exploring the latent fine-grained compatibility would
make the task more tractable, thus improving model performance.
Therefore, capturing the latent fine-grained compatibility among
discrete items to enhance FCM is the first challenge. 2) A simple
solution towards try-on compatibility modeling is to evaluate the
compatibility through an outfit’s real try-on appearance image.
However, the real try-on appearance is usually unavailable in
practice. Therefore, how to utilize the limited training try-on
appearance images of outfits to model the try-on compatibility
for outfits without the real try-on images constitutes another
challenge. And 3) the compatibility of the same outfit evaluated
from the collocation and try-on angles should be intrinsically
consistent. Therefore, utilizing the latent consistency to integrate
the collocation and try-on compatibility modeling seamlessly, in
order to boost the model performance, poses the third challenge.

To address the aforementioned challenges, we propose the
Collocation and Try-On Network (CTO-Net) for FCM. As shown
in Figure 2, CTO-Net consists of two core parts: Collocation
Compatibility Modeling (CCM) and Try-on Compatibility Modeling
(TCM). CCM implicitly fulfills the fine-grained compatibility
modeling. Specifically, to uncover the latent factors influencing the
compatibility, CCM injects disentangled item representations into a
graph convolutional network (GCN) and devises a new disentangled
compatibility propagation module to adaptively propagate the
fine-grained compatibility relationships among items. TCM fulfills
the try-on representation learning by exploiting the teacher-student
knowledge distillation scheme. In particular, the teacher network
is first trained using unsupervised self-encoding. Then, the student
network imitates the output of the teacher network and hence
derives the accurate try-on representation directly from the outfit’s
discrete composing items. To strengthen the try-on representation
learning, we incorporate the category information of each item
as the context, which remains untapped by previous studies. In
addition, we employ the mutual learning strategy [43] to encourage
both the CCM and TCM to transfer knowledge from each other
and further boost the final compatibility modeling performance.
Experimental results on the real-world dataset demonstrate the
superiority of our CTO-Net over the state-of-the-art methods.

The main contributions of this paper are summarized as follows:
1) Inspired by the human habits towards the fashion compati-

bility evaluation, we present a novel framework, i.e., CTO-Net, to
comprehensively analyze the fashion compatibility from both the
discrete collocation and unified try-on angles. In particular, the
two compatibility modeling schemes get mutually enhanced by
absorbing knowledge from each other.

2) We propose a novel disentangled graph learning scheme,
which is capable of analyzing the fine-grained collocation com-
patibility through propagating the compatibility between discrete
items based on their disentangled representations.

3) We propose an integrated distillation learning scheme for
try-on compatibility modeling, which utilizes the limited try-on
appearance images for guiding the network to learn a reliable try-on
representation based on the discrete fashion items in the outfit.

2 RELATEDWORK
This work is related to fashion compatibility modeling, graph
convolutional network, and knowledge distillation.

Fashion Compatibility Modeling. Existing studies on FCM
can be summarized into three groups, i.e., pair-wise [20, 23, 27,
28, 30], list-wise [4, 5, 8], and set-wise [3, 16, 37]. The pair-wise
methods focus on compatibility between a pair of items and derive
the compatibility by measuring all the pairs of items in an outfit.
Apparently, the pair-wise methods do not treat the outfit as a
whole and hence suffer from the sub-optimal performance. As to
directly evaluate the compatibility for outfits with multiple items,
increasing efforts have been dedicated to the list-wise and set-
wise manners. Specifically, the list-wise methods assume the outfit
as an ordered sequence of items, and employ the bi-directional
LSTM [8] or GRU [2], to uncover the sequential compatibilities
among items. Beyond that, the set-wise methods behave in a more
flexible manner by treating an outfit as a set of unordered items
and employing either GCN or self-attention mechanism to evaluate
an outfit’s matching degree [3, 37]. Although huge success, existing
methods cannot achieve comprehensive compatibility modeling, as
they overlook that humans usually evaluate the outfit compatibility
from both the discrete collocation and unified try-on angles.

Graph Convolutional Network. Mathias et al. [25] proposed
the graph convolutional network (GCN), which generalizes
convolution operation to the graph domain [13]. Due to its
remarkable capability of representation learning, GCN has been
widely explored in various tasks, including recommendation [31],
information retrieval [6], and visual comprehension [36, 39].
Recently, in the fashion domain, as each outfit can be abstracted
as an item graph, several GCN-based methods, like NGNN [3]
and HFGN [37], have been proposed for FCM. The key of these
methods is to update the item embedding with its context (the other
fashion items) in the outfit. Different from these methods that only
propagate the general item embedding, in this work, we conducted
the fine-grained item-item relationship propagation among items
with the disentangled representation learning.

Knowledge Distillation. Due to the remarkable performance
in various tasks [11, 14, 32, 40], knowledge distillation has attracted
growing research attention recently. Knowledge distillation adopts
the teacher-student network and aims to enhance the student
network by transferring the knowledge from a powerful teacher
network to the student network [9]. Recently, several studies
have been dedicated to exploring the potency of the knowledge
distillation to enhance the performance in the fashion domain [1,
27]. For example, Song et al. [27] proposed to incorporate fashion
domain knowledge to facilitate fashion compatibility evaluating.
Beyond the existing efforts, we worked on transferring the try-on
knowledge gained from the teacher network with the real try-on
image, to improve the try-on representation directly based on the
outfit’s discrete composing items.
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Figure 2: Illustration of the proposed CTO-Net, which consists of two core parts: CCM and TCM. In particular, CCM and TCM
are responsible for modeling the fine-grained collocation compatibility and the unified try-on compatibility, respectively.
Finally, the mutual learning is employed to encourage the knowledge sharing between CCM and TCM.

3 METHODOLOGY
3.1 Problem Formulation
Suppose we have the training set Ω = {(O𝑖 , 𝑦𝑖 ) |𝑖 = 1, ..., 𝑁 }
composed of 𝑁 outfits, where O𝑖 is the 𝑖-th outfit, and 𝑦𝑖 denotes
the ground truth label. Specifically, 𝑦𝑖 = 1 indicates that the outfit
O𝑖 is compatible and𝑦𝑖 = 0 otherwise. Each outfitO𝑖 consists of𝑀𝑖

complementary fashion items O𝑖 = {𝑜𝑖1, 𝑜
𝑖
2, · · · , 𝑜

𝑖
𝑀𝑖

}, where 𝑜𝑖
𝑗
is

the 𝑗-th item, associated with an image pixel array o𝑖
𝑗
and a category

embedding c𝑖
𝑗
. In particular, c𝑖

𝑗
∈ R𝐶 is a one-hot vector and𝐶 is the

total number of fashion item categories in the dataset. Besides, only
the positive/compatible outfits, have their corresponding try-on
appearance images. Accordingly, the whole training set Ω can be
split into two sets: one set of positive outfits Ω+ = {(O𝑖 , P𝑖 , 𝑦𝑖 ) |𝑦𝑖 =
1} and one set of negative outfits Ω− = {(O𝑖 , 𝑦𝑖 ) |𝑦𝑖 = 0}. P𝑖 denotes
the 𝑖-th outfit’s try-on image pixel array. Based on these data, we
aim to devise a FCM scheme F to evaluate the compatibility score
𝑠𝑖 of a given outfit O𝑖 = {𝑜𝑖1, 𝑜

𝑖
2, · · · , 𝑜

𝑖
𝑀𝑖

} as follows:

𝑠𝑖 = F ({𝑜𝑖𝑗 }
𝑀𝑖

𝑗=1 |Θ), (1)

where Θ is a set of to-be-learned parameters. Notably, we omit the
superscript 𝑖 in the rest of the paper for brevity.

3.2 Disentangled Graph Learning for CCM
Existing methods [37] utilize general representations of composing
items to capture the underlying collocation compatibility. However,
we argue that the compatibility relationship among discrete items
can be influenced by multiple latent factors, like color, texture, and
style. Hence, there simultaneously exist multiple latent fine-grained
compatibility relationships among discrete items. In light of this, we
propose the disentangled graph learning scheme for CCM, which
consists of three key parts: graph initialization, disentangled item
representation, and disentangled compatibility propagation.

3.2.1 Graph Initialization. For each outfit O, we first construct an
undirected graph G = (H , E), where H = {ℎ 𝑗 }𝑀𝑗=1 is the set of
nodes corresponding to the𝑀 composing fashion items in the outfit,
respectively, while E = {(ℎ 𝑗 , ℎ𝑘 ) | 𝑗, 𝑘 ∈ [1, · · · , 𝑀], 𝑗 ≠ 𝑘} is the
set of edges indicating the relation among the composing items of
the outfit. Each node ℎ 𝑗 is associated with a hidden state vector h𝑗
utilized for the compatibility propagation. Since the visual cue plays
an important role in the compatibility modeling, we initialize the
hidden state vector h𝑗 with the visual feature of the corresponding
item 𝑜 𝑗 . Specifically, we introduce a visual encoder E𝑐 , consisting
of several convolutional layers to obtain the visual feature map F𝑗
of each fashion item 𝑜 𝑗 . Then we obtain the visual representation
f𝑗 of the 𝑗-th item by reshaping the visual feature map F𝑗 into a
vector. Ultimately, we initialize the hidden state vector h𝑗 with a
linear transformation over the visual representation f𝑗 as follows:

h𝑗 =
Wℎf𝑗 + bℎ

| |Wℎf𝑗 + bℎ | |2
, (2)

where Wℎ and bℎ are the weight matrix and bias vector to be
learned, respectively. The linear transformation aims to project
the visual representation to a low-dimensional space and the
normalization is used to ensure the numerical stability.

3.2.2 Disentangled Item Representation. We argue that utilizing a
single overall hidden vector to capture the multi-facet fine-grained
compatibility relationship among fashion items can be insufficient.
Beyond existing studies, inspired by the recent advance of disentan-
gled representation learning in various recommendation tasks [10,
33], we propose to disentangle the multi-facet compatibility
relationship among discrete items and capture their fine-grained
compatibility on the basis of GCN.

In particular, we suppose that there are 𝐿 latent factors
{𝑓1, 𝑓2, · · · , 𝑓𝐿} influencing the compatibility relationship among
items. For each latent factor 𝑓𝑙 , we employ a conditionmaskC𝑙 ∈ R𝑑
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Figure 3: Illustration of L-way parallel propagation between
two nodes (items).

to derive the disentangled item representation u𝑙
𝑗
pertaining to the

𝑙-th latent factor as follows:
u𝑙𝑗 = h𝑗 ⊙ C𝑙 , (3)

where ⊙ denotes the element-wise product.
Intuitively, to promote the fine-grained compatibility modeling

for CCM, we expect that each disentangled representation can focus
on only one latent factor, namely, the disentangled representations
for different latent factors should be as independent as possible.
Therefore, we utilize L1 regularization on the condition masks to
encourage the sparsity and disentanglement [29, 34] as follows:

L𝑚𝑎𝑠𝑘 =
1
𝐿

𝐿∑
𝑙=1

| |C𝑙 | |1 . (4)

3.2.3 Disentangled Compatibility Propagation. After obtained the
disentangled representation for each node (item), we proceed to the
disentangled compatibility propagation over the graph. In particular,
we employ 𝐿-way parallel propagation to deliver the fine-grained
compatibility between items, as shown in Figure 3. One naive way
to fulfill the information propagation between nodes 𝑜 𝑗 and 𝑜𝑘 is
to equally aggregate all the parallel propagations. However, the
factor that dominates the compatibility between different item
pairs may be different. For example, as shown in Figure 4, the
factor that influences the compatibility for the left pair of items
is most likely to be the pattern, while that for the right one is
the style. In light of this, we incorporate the factor importance
in the disentangled compatibility relationship propagation with
the attention mechanism [19, 21, 22, 24, 35]. Specifically, given
items 𝑜 𝑗 and 𝑜𝑘 , we assess the attention score for their collocation
compatibility on the 𝑙-th latent factor as follows:

e𝑗,𝑘 = W2
𝑎 (𝛿 (W1

𝑎 (h𝑗 | |h𝑘 ) + b1𝑎)) + b2𝑎,

𝑎𝑙
𝑗,𝑘

=
exp(𝑒𝑙

𝑗,𝑘
)∑𝐿

𝑝=1 exp(𝑒
𝑝

𝑗,𝑘
)
, 𝑙 ∈ {1, 2, · · · , 𝐿},

(5)

where | | denotes the concatenation operator;W1
𝑎 ,W2

𝑎 , b1𝑎 , and b2𝑎
refer to the attention network parameters. 𝛿 (·) denotes the Tanh
activate function. e𝑗,𝑘 = [𝑒1

𝑗,𝑘
, 𝑒2

𝑗,𝑘
, · · · , 𝑒𝐿

𝑗,𝑘
] ∈ R𝐿 is the vector of

intermediate attention scores for 𝐿 factors.
Based on these attention scores, we define the message passing

from the item 𝑜𝑘 to the item 𝑜 𝑗 as follows:

m𝑘→𝑗 = 𝜙
(
W𝑝

𝐿∑
𝑙=1

𝑎𝑙
𝑗,𝑘

(u𝑙𝑗 ⊙ u𝑙
𝑘
) + b𝑝

)
, (6)

where W𝑝 and b𝑝 denote the weight and bias to be learned,
respectively.𝜙 (·) denotes the LeakyReLU activate function. Notably,

Incompatible pair of items Compatible pair of items

khaki 
office lady
wide-leg 

pants

green
casual
long

sleeve
blouse

short
sleeve
stripe
T-shirt

carreaux

short
skirt

Figure 4: Examples of different factors that dominate the
compatibility between different items.

instead of directly propagating the embedding of the 𝑘-th item
to the 𝑗-th item, we focus more on the interaction between them,
which is supposed to be the underlying compatibility between them.
In particular, u𝑙

𝑗
⊙ u𝑙

𝑘
accounts for the compatibility relationship

between items 𝑜 𝑗 and 𝑜𝑘 in terms of the 𝑙-th latent factor.
Then by summarizing the passing message from all neighbors,

the hidden state vector of item 𝑜 𝑗 can be updated as follows:

h∗𝑗 = 𝜙 (W𝑒h𝑗 + b𝑒 ) +
∑

o𝑘 ∈N𝑗

1
|N𝑗 |

m𝑘→𝑗 , (7)

where W𝑒 and b𝑒 denote the weight matrix and bias to be learned,
respectively.N𝑗 stands for the set of neighbor nodes of the node 𝑜 𝑗 ,
i.e., all the complementary items for item 𝑜 𝑗 in outfit O. h∗

𝑗
∈ R𝑑

is the updated hidden representation of item 𝑜 𝑗 , which absorbs
information from both the neighbors and the node itself.

Finally, we feed the updated item representation that embodies
its compatibility towards all the other items in the outfit to a multi-
layer perceptron (MLP) to acquire its compatibility score towards
the whole outfit. Thereafter, by summing the compatibility scores
of all items in the outfit, we can derive the outfit’s collocation
compatibility. Formally, we have:

𝑠𝑐 =
1
𝑀

𝑀∑
𝑗=1

𝜎 (W2
𝑐 (𝜙 (W1

𝑐h
∗
𝑗 ))), (8)

where 𝜎 (·) denotes the Sigmoid function to normalize the
compatibility score.W1

𝑐 andW2
𝑐 are the layer parameters.

3.3 Integrated Distillation Learning for TCM
The real try-on appearance image of an outfit is usually unavailable
in practice. Although existing method [5] directly generates
the outfit try-on appearance image based on the discrete items
with a template generator, it suffers from the large input-output
misalignment of the template generator. Instead, we resort to the
teacher-student knowledge distillation scheme [32]. In particular,
the teacher network is to learn the reliable try-on representation
by unsupervised self-encoding with the target try-on appearance
image, while the student network is to learn the global try-on
representation with the guidance of the teacher network.

3.3.1 Teacher Network. To learn a valid representation of the
try-on appearance and to guide the student network, we employ
the auto-encoder network [41] as the teacher network, which has
proven to be effective in the unsupervised visual encoding [42].
In particular, we adopt the ResNet-like architecture that has
shown remarkable performance in various generation tasks [44, 45]
as the teacher network T . To be more specific, the teacher



network comprises an encoder E𝑡 for compressing the real try-on
appearance image P of the outfit O into the visual feature map as
z𝑡 = E𝑡 (P), a transform block B𝑡 for converting the visual feature
map into the more expressive one as b𝑡 = B𝑡 (z𝑡 ), and a decoderD𝑡

for reconstructing the original try-on appearance image based on
b𝑡 as P̂ = D𝑡 (b𝑡 ). For optimization, we introduce L1 regularization
to minimize the discrepancy between the reconstructed try-on
appearance P̂ and the ground truth one P as follows:

L𝑡 =
∑
P∈P+

| |P̂ − P| |1 . (9)

3.3.2 Student Network. Beyond existing studies that only focus on
the visual cues of fashion items [5], we also take into account the
category metadata in the try-on appearance learning. The major
concern is that the category information of fashion items plays a
pivotal role in the spatial arrangement of fashion items in an outfit
try-on appearance, e.g., the sweater or shirt is always on top of the
trousers or jeans. Specifically, we devise the student networkS with
a visual encoder E𝑠 for merging the visual cues of the composing
items into the global visual embedding z𝑠 , a multi-modal fusion
block M𝑠 for fusing z𝑠 and the category embedding into the latent
feature map m𝑠 , and a transform block B𝑠 for converting m𝑠 into
the try-on feature map b𝑠 as follows:

z𝑠 = E𝑠 (O),
m𝑠 = M𝑠 (z𝑠 , Rep(W𝑐

𝑠C)),
b𝑠 = B𝑠 (m𝑠 ),

(10)

whereO = [o1, o2, · · · , o𝑀 ] and C = [c1, c2, · · · , c𝑀 ] are the visual
and category cues of items in the outfit. W𝑐

𝑠 ∈ R𝑑×(𝐶×𝑀) is the
weight matrix of the linear transformation to learn the global
category embedding of the outfit, while Rep(·) refers to replicating
the global category embedding to form the category feature map
with the same shape of visual feature map z𝑠 .

3.3.3 Knowledge Distillation. Regarding the knowledge distillation
from teacher network to student network, it is natural to regulate
the latent representation of the try-on appearance learned by
both teacher and student networks to be similar. In particular, we
first resort to the global average pooling (GAP) [17], which has
shown remarkable performance in discriminative visual property
extraction [38], to summarize the learned try-on representations
of the teacher and student networks as f𝑠 = GAP(b𝑠 ) and f𝑡 =

GAP(b𝑡 ), respectively. Then, using L1 regularization, we have:
L𝑠 = | |f𝑠 − f𝑡 | |1 . (11)

Similar with CCM, we employ a fully-connected layer to obtain
the try-on compatibility score 𝑠𝑡 as follows:

𝑠𝑡 = 𝜎 (W𝑠 f𝑠 + b𝑠 ), (12)
where W𝑠 and b𝑠 are layer parameters to be learned.

3.4 Mutual Learning based Joint Optimization
Similar to [5, 15], we cast the compatibility modeling as a binary
classification task. For each outfit O, we adopt the following
cross-entropy losses for CCM and TCM:{

L𝑐
𝑐𝑒 = −𝑦log(𝑠𝑐 ) − (1 − 𝑦)log(1 − 𝑠𝑐 ),

L𝑡
𝑐𝑒 = −𝑦log(𝑠𝑡 ) − (1 − 𝑦)log(1 − 𝑠𝑡 ),

(13)

Table 1: Data split provided by FOTOS. In FOTOS, each outfit
contains 4 clothing items at most.

#item training validating testing total
2 4,674 47 486 5, 207
3 4, 797 50 469 5,316
4 418 3 44 465

total 9, 889 100 999 10,988

where 𝑦 is the ground truth label of the outfit. L𝑐
𝑐𝑒 and L𝑡

𝑐𝑒 denote
the classification losses for CCM and TCM, respectively.

Moreover, although CCM and TCMmodel the compatibility from
different angles, for the same outfit, their evaluation should still
be consistent. In other words, the knowledge of CCM can be used
for guiding the TCM and vice versa. Therefore, we incorporate
the mutual learning strategy [43] to encourage their knowledge
sharing with each other. In particular, we adopt the most popular
Kullback-Leibler divergence regularization as follows:{

L𝑡→𝑐
𝑘𝑙

= 𝐾𝐿(p𝑐 | |p𝑡 ),
L𝑐→𝑡
𝑘𝑙

= 𝐾𝐿(p𝑡 | |p𝑐 ),
(14)

where p𝑐 = [𝑠𝑐 , 1 − 𝑠𝑐 ]T and p𝑡 = [𝑠𝑡 , 1 − 𝑠𝑡 ]T. L𝑡→𝑐
𝑘𝑙

and L𝑐→𝑡
𝑘𝑙

refer to the regularization for CCM and TCM, respectively.
Taking all the training samples into account, our final objective

function can be formulated as follows:
L𝑐 =

∑
Ω

(L𝑐
𝑐𝑒 + L𝑡→𝑐

𝑘𝑙
+ _𝑚L𝑚𝑎𝑠𝑘 ),

L𝑡 =
∑
Ω

(L𝑡
𝑐𝑒 + L𝑐→𝑡

𝑘𝑙
) +

∑
Ω+

L𝑠 ,
(15)

where _𝑚 refers to the trade-off hyper-parameter. Notably, L𝑠 is
optimized by the set of positive outfits Ω+, since the set of negative
ones is unavailable. Overall, we alternatively optimize the CCM and
TCMmodules. In particular, for each module optimization, only the
corresponding parameters need to be optimized. Once the whole
network gets well-optimized, we estimate the overall compatibility
score 𝑠 for a given outfit O as follows:

𝑠 =
1
2 (𝑠𝑐 + 𝑠𝑡 ) . (16)

4 EXPERIMENTS
4.1 Experimental Settings
Dataset. For evaluation, we used the public dataset FOTOS [5],
which consists of 10, 988 compatible outfits composed by 20, 318
fashion items. Each fashion item is associated with a visual image
and the category metadata. Distinguished from other datasets, apart
from the discrete items information, each outfit in FOTOS also has a
corresponding try-on image, which enables the optimization of our
try-on compatibility learning scheme. For the fair comparison, we
adopted the public training/validating/testing data split provided
by FOTOS. The detailed statistics are shown in Table 1.

Evaluation Task and Metric. Following TryOn-CM [5], we
evaluated the performance of our model with two tasks: the top-𝑛
recommendation [26] and the positive/negative outfit classification,
where we followed the same data settings in [5]. For evaluation



Table 2: Performance comparison among different methods.
* denotes the statistical significance for 𝑝 < 0.01, compared
with the strongest baselines highlighted with the underline.

Method AUC MRR HR
@1 @10 @100 @200

BRR-DAE 0.742 0.087 0.046 0.165 0.552 0.741
PAICM 0.692 0.057 0.024 0.110 0.468 0.662
CSA-Net 0.701 0.061 0.040 0.107 0.486 0.689
NCR 0.646 0.034 0.012 0.064 0.376 0.616

LSTM-VSE 0.794 0.118 0.065 0.226 0.642 0.809
TryOn-CM 0.832 0.134 0.061 0.290 0.721 0.852
NGNN 0.698 0.055 0.022 0.102 0.478 0.687
HFGN 0.816 0.154 0.080 0.312 0.704 0.834
CANN 0.820 0.146 0.081 0.267 0.702 0.837

CTO-Net 0.878∗ 0.218∗ 0.134∗ 0.395∗ 0.800∗ 0.899∗

metrics, we utilized the Mean Reciprocal Ranking (MRR) and the
Hit Rate (HR)@1, 10, 100, and 200 for the former task, during the
Area Under Curve (AUC) for the latter one.

Implementation Details. As for CCM, we devised the visual
encoder E𝑐 with one 1-strided convolutional layer and four 2-
strided convolutional layers, where the numbers of filters are 32, 64,
128, 256, and 512, respectively. The shape of the visual feature map
generated by E𝑐 is 512 × 8 × 8, and the dimension of the hidden
state vector is set to 512. The number of latent factors is set to 5.

Regarding TCM, we implemented the teacher network T with
an encoder E𝑡 sharing the same network architecture with E𝑐 ,
followed by the transform block B𝑡 composed of 6 residual blocks,
as well as the decoder D𝑡 with four 2-strided deconvolutional
layers and one 1-strided convolutional layer. The numbers of filters
are set to 32, 64, 128, 256, 512, 512, 512, 512, 512, 512, 512, 256,
128, 64, 32 and 3, respectively. All convolutional layers above are
followed by the Instance Normalization and ReLU function, except
for the last layer, which takes the Tanh function. In addition, we
implemented the student network S with an encoder E𝑠 sharing
the same network architecture with E𝑡 , a multi-modal fusion block
M𝑠 by a 1-strided convolutional layer, and a transform block B𝑠

by four residual blocks. The numbers of filters are set to 32, 64, 128,
256, 512, 512, 512, 512, 512 and 512, respectively. Ultimately, we
obtained f𝑡 ∈ R512 and f𝑠 ∈ R512 with the GAP layer. Similar to the
study [32], we first pre-trained the teacher network and then fixed
the teacher network for guiding the student network learning.

For optimization, we adopted the Adam [12] optimizer with
𝛽1 = 0.5, 𝛽2 = 0.999, a fixed learning rate of 0.0002, and the batch
size of 32 for all experiments. As for outfits with less than 4 items,
we used zero-paddings. Ultimately, we empirically found that the
proposed method achieves the optimal performance with the hyper-
parameter _𝑚 in Eqn.(15) as 0.0005. In particular, we reported the
average results of eight dependent experiments of our method.

4.2 On Model Comparison
To verify the effectiveness of our CTO-Net, we adopted the
following state-of-the-art methods for comparison.

BRR-DAE [28] aims to model the coherent relation among
multi-modalities of items based on a dual auto-encoder network.

PAICM [7], as a pair-wise method, utilizes matrix factorization
to learn several compatible/incompatible prototypes to promote
the explainable fashion compatibility modeling.

CSA-Net [29] introduces a category-based subspace attention
network to flexibly learn latent representations for pair-wise
fashion items based on the category labels.

NCR [2] explores the textual information in terms of the
semantic and lexical aspects towards outfit compatibility modeling,
where the outfit compatibility is learned in a list-wise manner.

LSTM-VSE [8] exploits the latent discrete item interaction by a
bi-directional LSTM and visual-semantic consistency to facilitate
the outfit compatibility modeling.

TryOn-CM [5] is the first to leverage the try-on appearance
image of an outfit to boost the performance of fashion compatibility.

NGNN [3] is the first attempt to employ a graph to uncover the
complex relationships among multiple complementary items.

HFGN [37] develops a hierarchical fashion graph network to
unify the fashion compatibility modeling and personalized outfit
recommendation. In our context, we only employed the item graph
module for compatibility estimation.

CANN [16] learns the computational visual coherence by fully
exploring the attention mechanism in a set-wise manner.

Table 2 shows the performance comparison among different
methods, where the statistically significant test is performed
between CTO-Net with the strongest baselines (highlighted with
the underline). It is worth noting that since BPR-DAE, PAICM,
NCR, LSTM-VSE, and TryOn-CM have been also adopted by the
work [5], we directly referred to their performance in [5]. Note that
we employed the same data settings with [5] for all experiments.
From Table 2, we have the following observations: 1) Our CTO-
Net consistently outperforms all the baselines, including both
pair-wise, list-wise, and set-wise methods, by a large margin with
respect to all metrics, which demonstrates the superiority of our
proposed framework. 2) CTO-Net shows superiority over TryOn-
CM, which also considers the try-on appearance to boost the
compatibility modeling performance. This indicates the robustness
of our integrated distillation learning scheme in obtaining the
reliable try-on representation. The detailed comparison between
CTO-Net and TryOn-CMwill be given in Section 4.4. 3) On average,
pair-wise methods (i.e., BRP-DAE, PAICM, and CSA-Net) perform
worse than list-wise and set-wise methods (i.e., LSTM-VSE, TryOn-
CM, HFGN, CANN, and ours). The philosophy behind may be that
separately modeling the compatibility between item pairs in the
outfit cannot accurately discover the complicated relationships
among them and hence yields sub-optimal performance. And 4) it is
unexpected that the set-wise method NGNN performs worse than
the pair-wise methods. The possible reason is that NGNN focuses
on propagating category-oriented fashion compatibility. Thus, it
performs unsatisfactorily in our context, where the negative outfit
shares the same item category as the positive one.

To gain deeper insights, we looked into the performance of our
model regarding outfits with different number (i.e.,𝑀) of composing
items. Figure 5 shows the performance comparison between our
CTO-Net and the five strongest baselines, i.e., BPR-DAE, LSTM-VSE,
TryOn-CM,HFGN, and CANN,with different testing configurations.
As can be seen, our method surpasses all baseline methods in all
settings, verifying the effectiveness of our method to handle the
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Figure 5: Performance comparison on compatibility evalua-
tion in terms of different item numbers.

outfit compatibility with different composing item numbers. We
also found that TryOn-CM outperforms other baselines, confirming
that the try-on appearance modeling indeed benefits the FCM.

On Time Consumption. To study the efficiency of our CTO-
Net, we compared the time consumption of TryOn-CM, HFGN,
CANN and CTO-Net in Table 3. Notably, the input of all methods are
images of an outfit’s composing items. As can be seen, our CTO-Net
shows the acceptable complexity during the training phrase, while
outperforms the baselines in terms of the testing phrase. This
demonstrates that our CTO-Net is efficient and practical for the
real-world application scenarios.

4.3 On Ablation Study
To get a thorough understanding of our model, we conducted
ablation experiments on the following derivatives.

CCM: This is a variant of ourmodel that only uses the collocation
compatibility modeling with the disentangled graph learning.

TCM: This is an implementation that only employs the
integrated distillation learning-based TCM module.

TCM-w/o-SC and w/o-Sc: We removed the category input
from the student network of both TCM and CTO-Net to learn
its importance to try-on representation learning.

CCM-w/o-Dis and w/o-Dis: To validate the necessity of the
fine-grained compatibility learning, we disabled the disentangled
representation by setting 𝐿 = 1 for CCM and CTO-Net, respectively.

CCM-w/o-InterP and w/o-InterP: To validate the function of
the item-item compatibility propagation, we replaced u𝑙

𝑗
⊙ u𝑙

𝑘
with

u𝑙
𝑘
in Eqn.(6) from both CCM and CTO-Net.
CCM-w/o-Att and w/o-Att: To study the effect of attention

mechanism in the adaptive importance attribution for different

Table 3: The comparison of time consumption. Training(s)
and Testing(s) denote the time cost for training per epoch
and testing per outfit, respectively.

Method Training(s) Testing(s)
TryOn-CM 430 0.0036
HFGN 139 0.0068
CANN 175 0.0079

CTO-Net 164 0.0020

Table 4: The ablation experiments of our proposed method.

Method AUC MRR HR
@1 @10 @100 @200

CCM-w/o-Dis 0.825 0.125 0.063 0.241 0.719 0.847
CCM-w/o-InterP 0.786 0.076 0.031 0.154 0.638 0.805
CCM-w/o-Att 0.835 0.133 0.064 0.270 0.726 0.862

CCM 0.848 0.151 0.079 0.309 0.751 0.871
TCM-w/o-Sc 0.813 0.122 0.065 0.222 0.689 0.840

TCM 0.835 0.134 0.072 0.255 0.723 0.845
w/o-Sc 0.862 0.181 0.103 0.346 0.776 0.885
w/o-Dis 0.867 0.196 0.115 0.365 0.782 0.884

w/o-InterP 0.822 0.150 0.080 0.278 0.693 0.832
w/o-Att 0.862 0.186 0.110 0.339 0.771 0.889

CCM-w/-Mut 0.872 0.177 0.096 0.345 0.791 0.899
TCM-w/-Mut 0.854 0.175 0.099 0.319 0.764 0.873
w/o-Mut 0.867 0.190 0.112 0.346 0.784 0.893
CTO-Net 0.878 0.218 0.134 0.395 0.800 0.899

latent factors, we equally aggregated all the parallel propagations
regarding different latent factors in both CCM and CTO-Net.

w/o-Mut: We removed both L𝑐→𝑡
𝑘𝑙

and L𝑡→𝑐
𝑘𝑙

from Eqn.( 15) to
explore the importance of mutual learning strategy.

CCM-w/-Mut and TCM-w/-Mut: To learn the effect of mutual
learning for CCM and TCM, we provided their corresponding
results with the enhancement of the mutual learning, respectively.

Table 4 shows the ablation experimental results. Based on Table 4,
we have the following observations. 1) Our model consistently
surpasses all derivations across all metrics, demonstrating the
effectiveness of each component in our proposed CTO-Net. 2)
Both CTO-Net and w/o-Mut consistently surpass CCM and TCM,
which implies that only modeling the compatibility from one angle
(either the collocation and try-on) cannot comprehensively capture
the complex compatibility relationship among multiple items. 3)
CTO-Net (TCM) shows superiority over w/o-Sc (TCM-w/o-Sc). This
indicates that leveraging the category information may assist to
automatically capture the item spatial arrangement in the try-
on appearance, and thus boost the performance of our try-on
representation learning. 4) CTO-Net (CCM) is superior to w/o-
Dis (CCM-w/o-Dis), implying the necessity to explore the fine-
grained compatibility between items in the FCM. 5) CTO-Net and
CCM significantly outperform w/o-InterP and CCM-w/o-InterP,
respectively. This confirms the facility of regarding the compatible
information as a passingmessage rather than the item embedding in
the context of outfit compatibility modeling. 6) w/o-Att (CCM-w/o-
Att) is inferior to CTO-Net (CCM). The possible reason is that the
confidence of the compatibility corresponding to different factors
are indeed not the same, while adopting the attention mechanism
can flexibly assign the factor importance. And 7) without the
mutual learning strategy, w/o-Mut shows inferiority to CTO-Net,
which implies that encouraging the two key modules to learn from
each other can boost the overall performance of the compatibility
evaluation. Meanwhile, we observed that CCM-w/-Mut and TCM-
w/-Mut outperform CCM and TCM, respectively. This suggests that
both CCM and TCM benefit from mutual learning.

Impact of Latent Factor Number. To study the influence of
𝐿, we conducted experiments by ranging 𝐿 from 1 to 8. As shown
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Figure 6: Top-10 retrieval results of different methods.

in Figure 7, the performance grows with 𝐿 increasing from 1 to 5.
The possible reason is that exploring the fine-grained compatibility
relationships between items is beneficial to CCM. Nevertheless,
the performance drops when 𝐿 varies from 5 to 8, suggesting
that considering too many fine-grained factors may limit the
discriminative capability of the disentangled item representation.

Case Study. To get an intuitive understanding on how ourmodel
works, we compared the top-10 retrieved results of CCM, TCM, and
CTO-Net for two testing queries in Figure 6. The ground truth items
are highlighted in the blue boxes. As can be seen, all methods can
retrieve the ground truth items in a relative top ranking, indicating
that both the outfit collocation and try-on reveal important cues
towards FCM. In particular, CTO-Net ranks higher than CCM and
TCM, respectively, implying that only exploring either perspective
is insufficient for a comprehensive FCM.

4.4 On Try-On Knowledge Distillation Study
To investigate whether the teacher-student knowledge distillation-
based TCM shows superiority over the existing method, i.e., [5],
we introduced the following two variants based on CTO-Net and
TryOn-CM. 1) CCM-TG. In this method, we replaced the try-on
knowledge distillation module of CTO-Net with the counterpart
in TryOn-CM, which essentially is a try-on template generator
working on producing the try-on appearance image based on the
discrete composing items of an outfit. And 2) CCM-TG-w/-Sc. Since
the original TryOn-CM did not incorporate the item category
context in the outfit try-on looking generation, for fair comparison,
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Figure 7: Impact of the latent factor number 𝐿.

Table 5: Performance on try-on learning methods.

Method AUC MRR HR
@1 @10 @100 @200

CCM 0.848 0.151 0.079 0.309 0.751 0.871
CCM-TG 0.854 0.173 0.103 0.323 0.760 0.874

CCM-TG-w/-Sc 0.864 0.191 0.116 0.346 0.772 0.891
CTO-Net 0.878 0.218 0.134 0.395 0.800 0.899

we additionally fed the category context to CCM-TG in the same
manner as TCM. Table 5 shows the performance comparison of
different methods. Firstly, as can be seen, with the enhancement
of the try-on modeling, both CCM-TG, CCM-TG-w/-Sc, and CTO-
Net outperform CCM. This reconfirms the importance of assessing
the try-on compatibility of an outfit. Secondly, we noticed that
CTO-Net surpasses CCM-TG-w/-Sc, which indicates that the try-on
appearance representation learned by our scheme is more reliable
than that derived by a try-on template generator. Last but not least,
CCM-TG achieves an inferior performance than CCM-TG-w/-Sc,
validating the necessity of utilizing the item category to enhance
the try-on appearance representation learning.

5 CONCLUSION
In this work, towards outfit compatibility modeling, we present
a novel collocation and try-on network, named CTO-Net, which
consists of two key components: CCM and TCM. Particularly, as
for the CCM, we inject the disentangled item representations into
GCN and devise a novel disentangled compatibility propagation
to uncover the fine-grained compatibility relationships in terms of
various latent factors. Pertaining to the TCM,we introduce a teacher
network to learn a real try-on representation by unsupervised self-
encoding, and a student network to imitate the teacher to acquire an
accurate try-on representation directly based on composing discrete
items, where item category is first studied as the spatial guidance
to strengthen the try-on representation learning. Furthermore, we
introduce mutual learning to encourage the key two modules to
transfer knowledge to each other. Extensive experiments conducted
on the real-world dataset demonstrate the superiority of CTO-
Net. In addition, we found that propagating the fine-grained
relationships between items over the graph does greatly improve
the FCM. Meanwhile, employing a teacher-student scheme for
try-on representation learning is superior to existing studies.
Moreover, transferring knowledge between the collocation and
try-on compatibility modules is also helpful to boost the model
performance. Currently, we only focus on the visual modality, but
overlooking the textual context of each item. In the future, we plan
to involve external information of items, such as text descriptions,
to enhance the modal performance as well as interpretability.
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